1

Huy Quyen Ngo

PhD Candidate · Robotics

Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213

huyquyen@andrew.cmu.edu | A https://ngohuyquyen.github.io | https://www.linkedin.com/in/ngohuyquyen1997/

PhD in Robotics

University of Michigan

MS IN MECHANICAL ENGINEERING

• Vingroup Full-ride Master's Degree Scholarship

Nagoya University

BS IN ELECTRICAL AND ELECTRONIC ENGINEERING AND INFORMATION ENGINEERING

• JASSO Scholarship

Research Experience _____

Carnegie Mellon University - The Robotics Institute

Advisor: Dr. Aaron Steinfeld

- PhD Dissertation: "Multi-modal Multi-stage Robot-to-Human Communications in Robot Failures"
- Design and implement integrated visual, auditory, and physiological modalities to facilitate effective in-vehicle interaction during startling and unexpected events.
- Research deep learning-based visual perception models for real-time detection of human emotional states, including surprise, confusion, and frustration.
- Develop simulation environments using Unity to evaluate Advanced Driver Assistance Systems (ADAS) and in-vehicle infotainment consoles.
- Developed system-level software for control and motion planning of a full-scale 7-DOF Fetch Robot, enabling automation and teleoperation for diverse manipulation and interaction experiments.
- Implemented multi-modal communication interfaces—including speech, gesture, and visual cues—to facilitate robotic explanation and promote explainable AI during failure scenarios.
- Designed comprehensive user studies and perform statistical analysis to explore the influence of robot behaviors on humans.
- Developed and implemented real-time obstacle-aware intent-expressive (legible) motion planning algorithm based on potential vector field planners in dynamic environments for robot-to-human handover task.

Professional Experience

Research Scientist Intern - Honda Research Institute

Advisor: Dr. Rana Soltani Zarrin and Dr. Yuhan Hu

- Built a general multi-modal perception model for human state understanding during robot-initiated touch, which can be adapted to most physical human-robot interaction scenarios, using only computer vision and user study data.
- Developed an optimization-based behavior adaptation system for verbal and nonverbal robot behaviors for human state improvement, capturing human preference with learning and tree-based approaches.

Applied Research Scientist Intern - Aptiv LLC

Advisors: Dr. Kai Zhang

- Implemented data-driven machine learning algorithms for map validation techniques and change detection for autonomous driving systems, which proved to be effective in real-world scenarios.
- Designed and tested map validation systems using on-board radar to enable the detection of real-time map alteration in driving logs, as compared to established reference maps.
- Devised a comprehensive evaluation framework for map validation systems, taking into account accuracy, robustness, scalability, and other pertinent metrics for the company's autonomous vehicle platforms.

San Jose, CA May 2024 - Aug. 2024

2019 - 2021

Ann Arbor, MI

Nagoya, Aichi, Japan 2015 - 2019

2021 - 2026 (expected)

Pittsburgh, PA Aug. 2021 - Present

Trov, MI

May 2021 - Aug. 2021

Publications_

Published

- Ngo, H. Q., & Steinfeld, A. (2024, August). Joint Potential-Vector Fields for Obstacle-Aware Legible Motion Planning. In 2024 33rd IEEE International Conference on Robot and Human Interactive Communication (ROMAN) (pp. 1856-1863). IEEE.
- Ngo, H. Q., Carter, E. J., & Steinfeld, A. (2024, November). Human Perception of Robot Failure and Explanation During a Pick-and-Place Task. In Proceedings of the AAAI Symposium Series (Vol. 4, No. 1, pp. 373-379).
- Ngo, H. Q. (2024). Human Perception of Robot Failure and Explanation (Master's Thesis, Carnegie Mellon University Pittsburgh, PA).

IN REVIEW

Ngo, H. Q., & Soltani Zarrin, R. (2025). Multi-Modal Perception and Behavior Adaptation Models for Human State Understanding and Interaction Improvement in Robotic Touch. Submitted to 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.

IN PREP

Ngo, H. Q., Jayaraman, S.K., Martelaro, N., & Steinfeld, A. (2025). Multi-Modal Modeling and Detection of Human Startling Reactions to In-Vehicle Unexpected Events. Submitting to 2025 IEEE International Conference on Intelligent Robots and Systems (IROS). IEEE.

Presentations_

* presenting author

CONTRIBUTED PRESENTATIONS

- Ngo, H. Q.*, Carter, E. J., & Steinfeld, A. 2024. Human Perception of Robot Failure and Explanation During a Pick-and-Place Task. Oral presentation: AAAI Fall Symposium Series, Washington, DC.
- Ngo, H. Q.*, & Steinfeld, A. 2024. Joint Potential-Vector Fields for Obstacle-Aware Legible Motion Planning. Oral Presentation: The 33rd IEEE International Conference on Robot and Human Interactive Communication (ROMAN), Pasadena, CA.

Teaching Experience

Fall 2024 Math Fundamentals for Robotics, Teaching Assistant

Other Professional Development

PEER REVIEW

Reviewer for AAAI Fall Symposium Series (2024)

CONFERENCE CHAIR

Chair of "Motion Planning and Navigation in Human-Centered Environments IV" session in IEEE RO-MAN 2024 Conference

PROFESSIONAL MEMBERSHIP

IEEE Student Member