HUY QUYEN (JASON) NGO

huyquyen@andrew.cmu.edu | (734)-881-5422 | linkedin.com/in/ngohuyquyen1997 | ngohuyquyen.github.io

SUMMARY

Seeking internship positions in Robotics, Machine Learning, and Human-Robot Interaction.

EDUCATION

Doctor of Philosophy, Robotics & Mechanical Engineering

Aug 2021 - May 2026

Comparis Mallow University

Carnegie Mellon University

Master of Science in Engineering, Mechanical Engineering

Sep 2019 - Apr 2021

University of Michigan - Ann Arbor

Bachelor of Engineering, Electrical & Electronic & Information Engineering

Oct 2015 - Sep 2019

Nagoya University

EXPERIENCE

PhD Candidate, Carnegie Mellon University - Robotics Institute

Sep 2022 - Present

- Conduct research and literature review for the Robot Proficiency Self-Assessment project in Human-Robot Interaction.
- Develop C++ and Python programs and ROS packages for the vision and control systems of the 7-DOF Fetch Robot, enabling automation and teleoperation capabilities on robots for various manipulation and interaction research.
- Conceptualize and execute robotic manipulation techniques to assess the performance of various modes of robot communications in failure scenarios during human-robot collaborative object manipulation tasks.
- \bullet Innovate and implement natural language processing and visual image projection as tools for robotic communications, which is proven to be 60% more effective than non-verbal behaviors in explainable robots.
- Design user studies with more than 40 in-person participants and perform statistical analysis to explore the influence of robot behaviors on humans, contributing to the understanding of explainable AI and robots in human-robot interaction.
- Develop modified XGBoost-based & Transformer-based neural network architectures and wearable wrist devices for predicting real-time trust in Human-Robot Interaction using Human Physiological and Behavioral data.

PhD Candidate, Carnegie Mellon University - Mechanical Engineering Department

Aug 2021 - Aug 2022

- Conducted research and literature review on Multimodal Haptic Guidance Robots for visually-impaired people.
- Conceptualized and optimized an Arduino-controlled mobile manipulator robot with customized humanoid end-effectors, which can seamlessly integrate various haptic component hardware for guidance purposes.
- Designed and innovated multimodal and bidirectional haptic interface designs, focusing on verbal and nonverbal communications from robots to humans using kinesthesia and tactile feedback.
- Executed and improved a guidance system in crowded environments, with an emphasis on psychophysical interactions and combined verbal/non-verbal communications between humans and robots.

Applied Research Scientist Intern, Aptiv LLC

May 2021 - Aug 2021

- Implemented data-driven machine learning algorithms for map validation techniques and change detection for autonomous driving systems, which proved to be effective in real-world scenarios.
- Designed, and tested map validation systems using on-board radar to enable the detection of real-time map alterations in driving logs, as compared to established refence maps.
- Devised a comprehensive evaluation framework for map validation systems, taking into account accuracy, robustness, scalability, and other pertinent metrics for the company's autonomous vehicle platforms.

PROJECTS

Robust Convolutional Malware Classification using Feature Squeezing (Deep Learning course)

- Built a robust convolutional neural network system for malware detection in the scenarios of adversarial attacks.
- Utilized feature squeezing to compress input data and remove redundant features, reducing external control of output.
- Improved the malware detection accuracy by 12% and precision by 1.8% in worst-case pertubation scenarios.

6-DOF Robotic Manipulator Project (Robotic Systems Lab course)

• Implemented Computer Vision, Forward Kinematics, Inverse Kinematics, and PID controllers for robot end-effector to grasp and manipulate AprilTag blocks for pick-and place, block stacking, and block handling tasks.

SKILLS

Programming Languages: C, C++, Python, MATLAB

Technical Skills: ROS, Linux, Computer Vision, Deep Learning, Robot Design, Robot Manipulation, Statistical Analysis

Publications

Ngo, H.Q., Carter, E., & Steinfeld, A. (2024). Human Perception of Robot Failure and Explanation During a Pick-and-Place Task. *ACM/IEEE International Conference on Human-Robot Interaction (HRI)* (under review).