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Abstract— Traditionally, potential fields and vector fields
have been extensively used for motion planning, especially in
finding paths to a goal position while avoiding obstacles along
the way. However, such methods have only been applied to
the problem of finding the shortest path to only one goal
position. In human-centered environments with multiple goals,
the shortest path (e.g., most predictable) is often not the most
intent-expressive path (e.g., most legible) to one of the goals. We
devised a method for robot planning and navigation in human-
centered environments that uses potential fields to plan intent-
expressive motion to a specific goal among many, while utilizing
adaptive vector fields to avoid obstacles without sacrificing the
legibility property of the motion. We found that our method
can produce motions that are of comparable legibility and
shorter path length compared to a legible motion planner
baseline, as well as more legible paths compared to a traditional
potential field method. Our method was evaluated in several
scenarios where legibility is useful, namely maps with and
without obstacles and goal switching.

I. INTRODUCTION

Motion planning has been a major active research areas
in robotics, with applications spanning diverse uses from
mobile robot servers in restaurants [1], robotic manipulators
handing over objects to humans [2], cars driving in the road
[3], and UAVs in the sky [4]. Motion planning, coupled with
obstacle avoidance, ensures a safe path from a starting posi-
tion to a goal position, without creating harmful interactions
on the way. Moreover, in human-centered environments,
communicating intention in complex situations (i.e., having
multiple available goals) requires special planning efforts, as
the shortest path is the most predictable but not always intent-
expressive [5]. Thus, being able to generate legible motions
in complicated environments, in which multiple goals and
possible obstacles are present, is extremely important in
providing safety and intent-expressiveness in robot behaviors
in human-centered environments.

We drew inspiration from established motion planning
methods, namely Potential Field (PF) [6] and Vector Field
(VF) [7] planning methods, to devise a new technique for the
generation of obstacle-aware legible motions. Traditionally,
PF utilizes a physics-based model of attractive and repulsive
forces acting on the agent, where the agent is constantly
pulled towards the goal and pushed away from obstacles.
In scenarios having more than one available goal positions,
the real goal attracts the agent and the other goals repel it,
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expressing the intention of going to that real goal and not
others. On the other hand, VF creates circular force fields
around obstacles, making the agent diverge its path when
traveling near the obstacles. In our method, the agent can
determine the direction of the circular force field of any
nearby obstacle based on the relative position of the goal
and the obstacle about the current heading direction of the
agent. Combining the attracting and repelling effects of the
real goal and other goals with the adaptive circular force
fields of nearby obstacles produces a generalized legible
motion planner with obstacle avoidance that can be applied
to arbitrary goals and obstacles with different sizes, effective
radii, and force scaling parameters. Such generated motions
are not only intent-expressive towards one of the available
goals, but also safe as they avoid obstacles on the way from
the starting position to the goal. Previous legible motion
planning work has not focused on this obstacle avoidance
capability (e.g., [8]).

We applied our method in a few cases where legibility is
highly relevant. The first case was similar to the scenario
in Taylor et al. [1], where a robot server delivers food to
one of two tables in a restaurant. The second case was
similar to the first case, but with obstacles on the original
planned path to the restaurant table, which can be another
robot server, a human customer, or simply a newly popup
table. Finally, the last case was inspired by the scenario of
robot-to-human object handover (e.g., [9], [10], [11]), where
the robot arm has to deliver an object to either the right
or left hand of a human, and re-planning is necessary if
the target hand is occupied. All those cases were modeled
in a 2-dimensional map with an omniscient observer and a
point robot navigating to one of the goals. In this paper, we
simplified the obstacles as appearing on the map, rather than
moving into the scene with arbitrary velocities and heading
directions. We defer the case of legible planning with moving
obstacles to a future work.

In summary, our contributions in this paper are listed as
below:

1) An algorithm for determining the direction of circular
vector force field of obstacles based on the relative
goal and obstacle positions about the agent’s current
heading direction; and

2) An obstacle-aware legible motion planner that works
on goals and obstacles with various sizes and tunable
effective radii, force scaling parameters, and vector
field strength.
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II. RELATED WORK

A. Legible Motion Planning

Dragan et al. [12] pioneered the research on legible motion
planning, in the context of expressing the robot’s intent to
go to one of many goals by exaggerating the motion. By
imposing a trust region in which motions become arbitrarily
unpredictable when outside of the region, the method was
able to generate paths that are intent-expressive, but less
predictable as predictability and legibility are contradictory
properties of motion [5]. In a later work, Holladay et
al. [13] constructed a planner focusing on pointing gesture
to reference objects in cluttered environments with multiple
objects. Using a ray-casting model, their method could
generate pointing configurations that make the goal object as
clear as possible. Although the observer’s viewpoint plays a
crucial role in the process, the method was able to trade off
efficiency for clarity of the pointing.

Recognizing the importance of observer’s viewpoint on
legibility, Taylor et al. [1] developed a method for generating
legible robot motions that indicate the robot’s goal while
in view of an observer. Verified by a 300-person online
study on first-person videos in restaurant with a robot server
scenario, their method was proven to be effective in the
situation of two tables as goals, in which the robot server
was delivering to one of the tables. While their planner
could generate legible robot paths to the goal, it did not
consider the situation where there were obstacles on the
robot’s path, which is the scenario we investigate here. In
addition, Nikolaidis et al. [8] developed a legible planner
that takes into account observer’s viewpoint, with additional
consideration of the occluded region in the map.

Choices in motion design can influence the collaboration
performance in human-robot interaction. Particularly, robot
arm motion can express intention to humans in collaborative
tasks, such as placing a plate where humans thought the
robot was going to place a cylinder [14]. Moreover, robots’
hesitant gesture such as backward movement could also
signal intention in facilitating order of passage and yield
priority, with varying back-off length and speed [15].

B. Potential Field and Vector Field Motion Planning

The potential Field planning method was established to
be effective for shortest path finding in the presence of
obstacles [6]. Taking inspiration from physics-based model
of attractive-repulsive forces, robots can avoid obstacles and
travel to the goal by following the path with lowest potential
function values. However, potential field generated paths can
suffer from the local minimum point problem, in which the
attractive-repulsive forces are balanced far from the actual
goal. Sun et al. [16] solved this problem by adding a term
of relative distance between the target and the robot in the
repulsive potential field function, which ensured the target
always being the global minimum potential. Although being
effective in avoiding local minima, this method can still
suffer from discontinuous paths where the instantaneous
heading direction change of the robot is relatively large.

Alongside potential field planning, researchers have devel-
oped planners for motion planning and collision avoidance
using vector fields, which can potentially resolve the problem
of large instantaneous heading direction change of robots.
Panagou [7] used vector fields to navigate the robot to the
goal by following the circular forces around static obstacles,
while the robot was under the attraction force of the goal.
However, the method worked under the assumption that all
the obstacles’ force directions are fixed based on the position
of the goal.

Wilhelm et al. [17] also attempted to solve the large in-
stantaneous heading direction change by using a vector field
for decreasing deviation from the original designated paths
around obstacles. The method employed gradient vector field
for path following and obstacle avoidance, which consists of
weighted convergence and circulation components to gener-
ate guidance vectors toward and then along the path around
the obstacle. In addition, Chen et al. [18] developed tangent
vector filed guidance and Lyapunov vector field guidance for
finding the shortest path under constraints of the UAVs.

While potential field planning methods and vector field
planning methods are effective in obstacle-aware shortest
path finding, they have not been applied to the problem of
legible motion planning in the context of expressing intent to
one of multiple goals. Our work drew inspirations from these
methods to address the problem of legible motion planning
[5] with obstacle avoidance.

C. Other Obstacle-Aware Planning Methods

Apart from potential fields [6], [19] and vector fields
[7], other planning methods have been proven to work for
obstacles in the map. Heuristic algorithms such as A* [20]
and Dijkstra [21] represent the map as nodes with edges
connecting them together, in which the edges have costs
when traversing through them. In such cases, obstacles could
be modeled as nodes such that the edges to them have very
large cost, thus making the path avoiding those edges and the
obstacles. Such methods inspired many later path planners
which make the cost traveling to or near obstacles very large
for obstacle avoidance. Other heuristic algorithms can update
the heuristic estimate of the current state such as [22], as well
as combining heuristic and incremental search to find paths
in dynamic environment [23].

The strategy of finding an obstacle-aware path depending
on the relative position of the goal and the start was con-
sidered in the family of BUG algorithms [24], [25]. These
algorithms can find the shortest path to the goal, and the
path finding strategy based on the relative position between
the goal and the current robot position was an inspiration
when developing our directional vector field for obstacle
avoidance.

Finally, researchers have investigated obstacle avoidance
during path planning with sampling-based method, such
as Rapidly-Exploring Random Trees (RRT) [26], [27] and
Probabilistic Roadmaps (PRMs) [28]. While those methods
are well-established, they only work for known maps with
known obstacles, thus discarding the real-time characteristics
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of the system, in which our method focused on developing
in this work.

III. METHOD

Our method combined the attractive-repulsive mechanism
of Potential Field (PF) for the real goal and other goals with
the directional circular Vector Field (VF) of nearby obstacles
for legible obstacle avoidance.

A. Potential Field for Goals

In traditional PF, the global goal always attracts and the
obstacles repel, creating a combined effect of pulling the
agent to the goal and pushing the agent away from the
obstacles. Inspired by those principles, we modeled the real
goal of our situation having the attractive force and the other
goals having the repulsive forces.

The attractive potential field functions of the real goal and
the other goal can be represented as below:

Utotal = Ugoal +

Nother∑
other=1

Uother (1)

Ugoal =
1

2
kp(dgoal)

2 (2)

Uother =

 1
2kn

(
1

dother
− 1

sother

)2

, dother ≤ sother

0, dother > sother
(3)

where dgoal and dother are the distance from the goal and
the other goal to the agent, respectively; kp and kn are
the gain coefficients of the attractive and repulsive forces,
respectively; sother is the maximum distance of influence
for the repulsive force of the other goal (in our case, it is
the distance between the starting position and the other goal
location); and Nother is the number of other goals.

The attractive force and repulsive force functions are the
negative gradient of the gravitational potential field functions
of the goal and the other goal. To account for the problem of
local minimum point of PF, we used the optimized repulsive
force function in [16] to ensure that the real goal is always
the global minimum point of the entire field. Specifically,
we added a decaying term (dgoal)

n in the repulsive force
function of the other goal, with n is the decay coefficient:

Ftotal = Fgoal +

Nother∑
other=1

Fother (4)

Fgoal = −kpdgoal (5)

Fother =

{
kn

(
1

dother
− 1

sother

)
(dgoal)

n

(dother)2
, dother ≤ sother

0, dother > sother
(6)

By modeling the potential field as above, the agent always
travels towards the real goal while steering clear of the
other goals. This principle reflects the idea in legible motion
planning [5], as the agent communicates the intention of the
real goal being the target through the planned motion.

B. Vector Field for Obstacle Avoidance

We used directional VF for obstacle avoidance, in which
its direction depends on the agent’s heading when it first
travels in the obstacle vector field’s effective region. An
example of an obstacle vector field is shown in Figure 1.

Fig. 1. Example obstacle with circular vector field. The field has a
counterclockwise direction. The field strength is inversely proportional to
the distance to the center of the obstacle (e.g., the closer to the center, the
larger the force).

Our vector field for obstacles is modeled as below, with
Fox and Foy being the vector forces in x and y directions:

Fox = directionfkf

(
−py − oy

d2o

)
(dgoal)

m (7)

Foy = directionfkf
px − ox

d2o
(dgoal)

m (8)

where px, py , ox, and oy are the x and y positions of the
agent and the obstacle, respectively; do and dgoal are the
distance from the obstacle and the goal to the agent; and
kf is the vector field strength coefficient; directionf is the
circular direction of the vector field (1 for counterclockwise
and -1 for clockwise). Finally, similar to Equation 6, the term
(dgoal)

m is to ensure the real goal being the global minimum
point for the entire field, with m is the decay coefficient. For
this, m and n can have different values.

In order to determine the direction of the circular vector
fields around obstacles, we imposed a check on the relative
positions of the goal and the obstacle about the current
heading of the agent when it first travels in the effective
range of the obstacle vector field. This is partially inspired by
the family of BUG algorithms [24], where the path planning
process is based on the line between the start and the goal. If
the goal and the obstacle are on opposite sides of the agent’s
heading, the obstacle vector field has a clockwise direction,
and vice versa. The algorithm is shown in Algorithm 1.
The sign(Heading(Goal)) is to account for different cases
regarding relative positions of the two goals, which can
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Algorithm 1 Obstacle Vector Field Direction
Require: Agent,Heading,Obstacle,Range,Goal

if Distance(Agent,Obstacle) <= Range then
if Heading(Obstacle) ∗Heading(Goal) <= 0 then

▷ Opposite Sides of the Heading Line
Direction = −1 ▷ Clockwise

else
Direction = 1 ▷ Counterclockwise

end if
end if
Return sign(Heading(Goal)) ∗Direction

be calculated by plugging the position of the goal in the
Heading line equation and take the sign of the result.

Compared to traditional potential field obstacle avoidance,
where the repulsive force points directly outward from the
center of the obstacle, this vector field allows smoother
motion when avoiding the obstacle.

IV. EVALUATION METRICS

Our goal was to confirm that our method can generate
paths that are more efficient than and of comparable legibility
as [12], and more legible than [6]. The two metrics we used
allow comparison of the legibility and efficiency of the paths:
Area Under the Legibility Curve (AULC) and Total Path
Length (TPL).

A. Area Under the Legibility Curve (AULC)

Inspired by Area Under The Curve (AUC) by Myerson
et al. [29], AULC represents the legibility scores of the real
goal over time, calculated by computing the AUC of the
real goal’s legibility scores. Due to our method not being an
optimization approach, using only the final path’s legibility
score would potentially neglect the legibility of the earlier
portions of the path. We used AULC for a comprehensive
evaluation of the whole path’s legibility.

To calculate the legibility score of a given path ξS→ξ(t),
we used the formula in Dragan et al. [12] as below:

legibility(ξ) =

∫
P (G∗|ξS→ξ(t))f(t) dt∫

f(t) dt
(9)

in which P (G|ξ{S→ξ(t)}) is the probability of inferring goal
G via path ξ from the start point S to an arbitrary point ξ(t)
on the path. Here, ξ∗ξ(t)→G is the optimal path from the point
ξ(t) to goal G, and ξ∗S→G is the optimal path from the start
S to the goal G, which are straight paths. The probability
P (G|ξ{S→ξ(t)}) is expressed as below:

P (G|ξS→ξ(t)) ∝
exp

(
−C(ξS→ξ(t))− C(ξ∗ξ(t)→G)

)
exp (−C(ξ∗S→G))

P (G)

(10)
The cost function C was calculated by the sum squared

velocities of the path:

C[ξ] =
1

2

∫
ξ′(t)2 dt. (11)

We denote legibilityG(ξ) is the legibility score of path ξ
inferring goal G. Thus, the AULC of path ξ is:

AULC(ξ) = AUC(legibilityRealGoal(ξ)) (12)

With this Area Under the Legibility Curve metric, we
can conclude which path is more legible by comparing the
magnitude of AULC. A more legible path has a larger AULC
value, and vice versa.

B. Total Path Length (TPL)

The shortest path to a goal is a traditional path planning
evaluation metric, motivating selection here. In this paper,
TPL was computed as the sum of the lengths of all segments
in the path, in which path with shorter length is considered
more efficient:

TPL(ξS→G) =

∫ T

0

ξ(t) dt. (13)

in which ξ is the path, and T is the total time step to reach
the goal G from the start point S.

To evaluate our method, we compared paths generated
by our method, paths generated by traditional potential field
method [6], and legible baseline paths generated by Dragan
et al. [5] with our two metrics mentioned above, namely Area
Under the Legibility Curve (AULC) and Total Path Length
(TPL). For each case, the legibility scores over time of our
method and baselines are described in Figure 5, and the total
path length of each method is shown in Figure 6 in the last
subsection of Results.

V. RESULTS

A. Simulation Settings

As mentioned earlier, our three evaluation cases were
inspired by human-centered scenarios in which legibility is
needed, namely robot servers in restaurant settings [1], [30]
and robot-to-human object handover [9], [10], [11]. In the
first case of no obstacle, the robot server has to deliver food
to one of the two tables, in which legibility is necessary for
expressing early intention of delivering food to the target
table. The second case was similar to the first case in a
restaurant setting, except having obstacles appear on the path.
Those obstacles can be other robot servers, human customers,
and newly popup tables in the restaurant, in which the
robot server should navigate to avoid without sacrificing the
legibility of the path. The final case highlighted the necessity
of legible paths in a robot-to-human handover task, in which
the robot arm should deliver an object to either the left or
right hand of humans. At an arbitrary point, the robot realizes
the target hand is occupied, thus re-planning an alternative
path to the other hand expressing the intention change. All
of these scenarios need legibility in robot motions, and were
analyzed individually in this section.

We simulated our method on 2-dimensional map with
Python and Matplotlib. Our parameters are listed in Table I
for future reproduction of our results. Note that the other
goal’s effective range is the Euclidean distance between the
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Other Goal and the Start position, thus having an odd value in
the Parameter Table. The parameters can be tuned to generate
paths with different legibility and efficiency characteristics
depending on different start and all goal positions. For
example, if you wish to exaggerate the path for more legible
motions, decrease the attractive coefficient kp and increase
the repulsive coefficient kn, and adjust the decay coefficient
m accordingly. To make the obstacle avoidance effect more
significant, consider increasing the vector field strength kf
and adjust the decay coefficient n accordingly. Discussion
on manual parameter tuning is presented later in the paper.

TABLE I
PARAMETER TABLE

Definition Parameter Value
Start Start [3,0]
Goal Goal [4,6]
Other Goal OtherGoal [2,6]
Obstacle’s effective range sobs 1
Obstacle radius robs 0.1
Goal radius (all goals) rgoal 0.25
Other goal effective range sother 6.08
Attractive coefficient kp 0 → 20.0
Repulsive coefficient skn 0 → 2.0
Decay coefficient in Fother m 0 → 10.0
Decay coefficient in Fox, Foy n 0 → 1.0
Vector field strength kf 0 → 50.0
Trust Region Threshold [12] beta 40

B. Legible Motion Without Obstacles

The robot can plan a legible path from the starting point
to the real goal (in blue) instead of the other goal (in red) in
the case of no obstacle on the map, as shown in Figure 2.

For the Potential Field method [6], the path was a straight
line to the goal since there was no repulsive force from
any obstacle. For Legible Motion method [12], the path
was generated with the trust region threshold value to be
40 (Table I).

Compared to the legible path generated by Dragan et
al. [12], our path showed similar exaggerating characteristics
of a legible path to the real goal (in blue).

Our results of AULC and TPL metrics in the no obstacle
scenario showed that our method generated paths with com-
parable legibility score to the Legible baseline [12] (5.5%
less legible) and significantly more legible than Potential
Field baseline [6] (67.6% more legible). Moreover, our
method can generate paths that are more efficient than the
Legible baseline (8.4% more efficient).

C. Legible Motion With Obstacles

Even with the presence of obstacles, the robot can still
plan legible paths to the real goal (in blue) instead of the
other goal (in red) while smoothly avoiding obstacles on the
way. An illustration is shown in Figure 3.

For the legible path baseline in this case, we also use
the method from Dragan et al. [12] by further exaggeration
of the path to avoid obstacle. However, the legible baseline
from Dragan et al. [12] does not consider real-time obstacle
avoidance. Thus, to compare the real-time characteristics, the

Fig. 2. Legible path to the goal destination (blue) and the repulsive field
of the the other destination (red). The orange path was the legible baseline
from [12], and the maroon path was from the potential field method [6]
(maroon).

legible baseline path was only re-planned when the agent was
first in contact with the effective radius of the obstacle, hence
a slight divergence in the yellow path near the point (4,1) in
Figure 3. That re-planned path was generated with the same
parameters as the original path, only with a different starting
point.

If the obstacle is far away from the original robot path
(e.g., the left obstacle in Figure 3), the robot path remained
unaffected by the obstacle since the agent was outside that
obstacle’s effective radius.

Similar to the no obstacle scenario, our results of AULC
and TPL metrics in the obstacle scenario showed that our
method generated paths with comparable legibility scores to
the Legible baseline [12] (28.8% less legible) and signifi-
cantly more legible than Potential Field baseline [6] (93.6%
more legible). Moreover, our method can generate paths that
are more efficient than the Legible baseline (10.7% more
efficient).

D. Switching Goals

In this scenario, the robot decides to go to another goal
at a random point along the path, which could be due to
various reasons (e.g., the original goal was occupied). Our
method was able to still plan an alternative legible path to
the new goal. An illustration is shown in Figure 4.

A goal switch can happen any time, and a new goal can
be anywhere on the map. For the sake of easy understanding,
we show the simple situation where the positions of the
two goals were swapped. For this specific scenario, we only
compared the part of the paths from the switching point to
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Fig. 3. Legible path from the starting position to the real goal (in blue)
instead of the other goal (in red). The robot diverges from its original path
(obstacle-aware) if the obstacles are near the original path. The orange path
was the legible baseline from [12], and the maroon path was from the
potential field method [6]. Dashed paths are from Figure 2 (paths with no
obstacle). The white asterisk pattern is an artifact of the rendering.

Fig. 4. The robot initially headed for the goal on the right. At a specific
point of some distance to the right goal, it decided to switch to the left goal
(i.e., realized the right goal is occupied). All the switching points are of
equal distance to the right goal. The orange path was the legible baseline
from [12], and the maroon path was from the potential field method [6]. All
comparisons of legibility and efficiency metrics were performed only on the
part of the paths after the switching positions (red star). Dashed paths are
from Figure 2 (paths without goal switch).

the left goal. The first part of the path was not measured for
this comparison.

For the goal switch case, our results of AULC and TPL
metrics in the obstacle scenario shown that our method could
generate paths with comparable legibility score to the Legible
baseline [12] (8.7% less legible) and more legible than
Potential Field baseline [6] (43.5% more legible). Moreover,
our method could generate paths that are more efficient than
the Legible baseline (18.6% more efficient). Even though we
only considered the later part of the path after the switch, the
differences in legibility of all methods were still significant
compared to the previous scenarios (no obstacle and with
obstacle). Thus, our claims still hold for this case.

Moreover, our method has an added advantage of not
displaying a sudden change in robot direction. As observed in
Figure 4, the heading direction change of the legible baseline
(orange path) was very large compared to ours. This implies
our method will have more appropriate behavior in real-
world robots, as compared to the legible baseline [12].

E. Results Summary

The results of all three scenarios on the two metrics,
namely Area Under the Legibility Curve (AULC) and Total
Path Length (TPL), are presented in Table II, Figure 5, and
Figure 6.

TABLE II
EVALUATION TABLE OF ALL CASES

Case Metrics Potential
Field

Legible
Motion

Ours

No Obstacle AULC 4.42 7.82 7.41
TPL 6.09 7.19 6.63

With Obstacle AULC 5.15 12.84 9.97
TPL 6.30 7.48 6.76

Goal Switch AULC 2.55 3.98 3.66
TPL 2.97 4.60 3.88

From these, our method was consistently able to generate
paths on all three scenarios that are of comparable legibility
with and more efficient than the Legible Baseline [12].
Moreover, our generated paths were more legible than paths
generated by the Potential Field method [6].

VI. DISCUSSION AND FUTURE WORK

A. Optimal Parameters for Motion Generation

Although paths generated by our method have a compa-
rable legibility and shorter length than paths from legible
baseline, as well as more legible than paths from potential
field method, our set of parameters was tuned manually.
Those parameters, such as attractive/repulsive field strengths,
obstacle vector field strength, and effective radius, could
impact the performance of the path generation process.
Future work could use optimization methods to automatically
tune and choose the best set of parameters for the best
performance based on our proposed metrics.

Moreover, hyper-parameter optimization techniques could
be used to achieve the desired results of legibility and
efficiency. Grid search [31], while computationally intensive
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Fig. 5. Legibility scores over time of all three methods in the case of No Obstacle (left), With Obstacle (middle), and Goal Switch (right) on the map:
ours (blue), Dragan et al. [12] (orange), and Potential Field [6] (maroon). For the case of Goal Switch, time 0 is the time of the switching position.

Fig. 6. Total Path Length of all three methods in all cases: ours (blue),
Dragan et al. [12] (orange), and Potential Field [6] (maroon).

and limited by the predefined values for each parameters,
could be used to optimize parameters, in which the possible
ranges of parameter values could be determined by manual
searching the first few times (i.e., Table I). Random Search
[32] could also be incorporated to optimize parameters due
to its simplicity and less computationally intensive. Bayesian
optimization [33] is another potential method for tuning pa-
rameters, as it has gained popularity in the machine learning
community. Due to its ability to consider the previous eval-
uation results during the parameter tuning process, Bayesian
optimization could select the combination that yields the best
results, thus being able to choose a good set of parameters
in relatively few iterations. Future work could apply these
hyper-parameter tuning techniques to generate paths with
efficiently shorter path length, while retaining a comparable
legibility characteristics.

B. Real-time Characteristics of the Method

Previous works on legible motion planning [1], [12],
[8] have not focused on the problem of real-time obstacle
avoidance during path generation. They instead concentrated
on generating legible paths with known maps. The real-time
characteristics of our method was demonstrated through the
introduction of the effective radius of the obstacle, in which
the robot only plans an alternate path when it travels inside
the effective radius of the obstacle. This implies a possible
application in the real-world, where the effective radius of the
obstacle can be interchanged with the robot’s sensor range.
I.e., the robot re-plans an alternative path to avoid obstacles
only when they appear within sensor range.

Moreover, legible motion planners could consider obstacle
avoidance by adding the cost of going near obstacle in their
calculation of cost functions. Although our obstacle avoid-
ance method was inspired by vector fields, other types of ob-
stacle avoidance could be modified and integrated for legible
motion planning, such as the family of BUG algorithms [34]
and their extensions [35]. On the other hand, sampling-based
algorithm for obstacle avoidance could also be considered,
such as modified strategies from Rapidly-Exploring Random
Tree (RRT) [27] and Probabilistic Roadmaps (PRMs) [28].

Finally, our method only considered obstacles appearing
on the map, not dynamically moving into the scene, which
is not always the case in real-world situations [3], [36]
where obstacles have their own dynamics. Our method opens
up potential applications to unstructured environments and
dynamic obstacles in real-world settings, in which the agent
can update the position of the obstacles and adjust its mov-
ing direction in every time step. Although not specifically
discussed in our paper, our method has potential to scale up
and generalize to more complex environments and obstacles.
Thus, future work calls for the consideration of obstacles
moving in the scene in the generation of legible motions,
with obstacles having their own velocities and directions.

C. Human Study

This work focused on developing the planning algorithm
for legible motion planning and relied on simulation-friendly
metrics, not human ratings. Likewise, other methods consid-
ered viewpoints [8] and observers [1] for evaluation, while
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this work uses an omniscient observer where everything can
be seen from a birds-eye view – a view humans usually do
not have access to. Thus, a comparison to state-of-the-art
methods as baselines using one or more human studies in
real-world scenarios is a direction for future work.

VII. CONCLUSION

By combining the advantages of the Potential Field
method and the Vector Field method for obstacle-aware path
planning, we were able to generate paths that are similarly
legible with and of shorter path length than paths generated
by previous legible motion planning work. Moreover, our
method could produce legible paths that are significantly
more legible than ones generated by traditional potential field
method. Those differences demonstrated using evaluation
metrics, Area Under the Legibility Curve and Total Path
Length, in human-centered scenarios where legibility is val-
ued. Our method also demonstrated more human-appropriate
handling of newly detected obstacles and goal changes.
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