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Abstract

In recent years, researchers have extensively used non-verbal
gestures, such as head and arm movements, to express a
robot’s intentions and capabilities to humans. Inspired by past
research, we investigated how different explanation modal-
ities can aid human understanding and perception of how
robots communicate failures and provide explanations dur-
ing block pick-and-place tasks. Through an in-person, within-
subjects experiment with 24 participants, we studied four
modes of explanations across four types of failures. Some of
these were chosen to mimic combinations from prior work in
order to both extend and replicate past findings by the com-
munity. We found that speech explanations were preferred to
non-verbal and visual cues in terms of similarity to humans.
Additionally, projected images had a comparable effect on
explanation as other non-verbal modules. We also found con-
sistent results with a prior online study.

Introduction

Humans frequently provide explanations for behaviors in
daily life, especially following an unfavorable action, such
as failing to do a task. Thus, humans likely expect robots
to explain their behaviors in failure situations, verbally or
non-verbally. Past work shows that the ability of robots to
explain themselves can have a positive effect on the robots’
perceived trustworthiness (Edmonds et al. 2019) and human-
likeness (Ambsdorf et al. 2022).

In this work, we extended a prior study on robot explana-
tion in a cup-handover task (Han, Phillips, and Yanco 2021).
The study examined failure conditions of a cup that was out
of reach from a Baxter robot. The robot explained each fail-
ure in handing the cup to participants by looking or shak-
ing its head at the cup and pointing to the cup with its arm.
The study found that without head shakes, both the Look
and Look & Point conditions worked well as they were neu-
tral relative to expectedness for participants. Moreover, they
found that No Cue (do nothing) increased the level of unex-
pectedness, and adding head shakes made the robot’s behav-
ior more unexpected across all conditions. The study also
indicated that the robot should concisely explain its behav-
ior in all circumstances, preferably if the explanations are in
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situ, but only a small percentage of participants thought that
humans should explain failures in the same non-verbal way.

In our study, we only considered Look as the primary head
movement during the explanation. We also had our robot
explain its failures in situ. In addition, we introduced two
new explanation components, namely Image Projection and
Speech, inspired by later work by the same team (Han and
Yanco 2023). Mixing prior and new interactions supports
both extension and replication of past work.

In our experiment, the robot performed a routine of pick-
ing up blocks on the table and placing them onto a tray. We
studied four modes of explanations: Head (only look at the
object), Head & Arm (look at the object and move the arm),
Head & Projection (look at the object and project an image
on the workstation), and Head & Speech (look at the object
and utter a statement). The two newly added components of
Projection and Speech have been proven to be effective in
communicating explanations of the robot failures in other
contexts (Han and Yanco 2023; Cao et al. 2023). These con-
ditions were used to explain four types of failures: Out Of
Reach (the object is too far away from the robot), Object
Size (the object is too large for the robot to grip), Grasp Fail-
ure (the robot cannot securely grasp the object), and Percep-
tion Failure (the robot hallucinates an object). Moving the
study to in-person also allows us to see if results from the
replicated combinations are consistent with the prior online
study (Han, Phillips, and Yanco 2021).

We designed a 15-item questionnaire, partly adapted from
Han, Phillips, and Yanco (2021), to measure some key as-
pects of human-robot interaction: Unexpectedness, Human-
Robot Difference, Level of Detail, Conciseness, and Need
for Explanation in failure situations.

In summary, our contributions in this paper are:

1. An in-person, partial replication of a prior study on robot
explanation, showing non-verbal gestures having similar
effects on human perception using a different robot, thus
confirming the consistency between online and in-person
experiments and across robot platforms;

2. Findings showing that projected images for robot perfor-
mance explanation have similar effect on human percep-
tion compared to non-verbal gestures; and

3. Evidence for a prior conjecture about speech being pre-
ferred for explaining robot failure and performance.



Related Work
Robot Failure and Explanation

In the motivating prior work, Han, Phillips, and Yanco
(2021) studied robot explanation during a cup handover task
in which the cup was out of reach from the robot arm. To
explain its behavior, the robot used non-verbal cues, such as
arm and head movements, to express the robot’s difficulty
in reaching the cup placed far away on the table, including
Look only, Look & Point, and No Cue, coupled with Head-
shake or No Headshake. They found that removing head-
shakes decreased the level of unexpectedness to the explana-
tion in both Look & Point and Look only, and that the robot
should always give cues to be perceived as less unexpected.
Building on that idea, we eliminated the Headshake portion
of the cue, so the only motion for the robot head was to look.
Moreover, Han, Phillips, and Yanco (2021) conducted their
experiment online. Thus, we conducted an in-person exper-
iment to confirm the consistency of our results with those of
their online experiment.

In a later work, Han and Yanco (2023) used verbal and
projection indicators, coupled with head and arm motion
replay, to communicate past causal information related to
tasks. Cao et al. (2023) discussed a method of robot pro-
ficiency self-assessment, Assumption-Alignment Tracking
(AAT), that can make the robot aware of the environment,
robot hardware, and assigned tasks. Thus, failure modes can
be monitored and assessed to evaluate the robot’s capabil-
ity of performing a task. Likewise, Rosenthal, Selvaraj, and
Veloso (2016) studied the effectiveness of the verbal modal-
ity in parallel with visual modality during robot operation.
Moreover, verbal explanation has been proven to be effec-
tive in failure situations (Choi, Mattila, and Bolton 2021;
Khanna et al. 2023). Thus, we studied both visual modali-
ties (projection, gestures) and verbal modalities (speech) in
robot failure and explanation.

Image projection is versatile in communicating impor-
tant information about the contexts of the tasks and behav-
iors of robots. Previous work by Han and Yanco (2023)
demonstrated the effectiveness of projection in revealing
task-related information. Projections can indicate bound-
aries around robots (Vogel et al. 2011) (e.g., maximum robot
reach), display information about the robot (Vogel, Walter,
and Elkmann 2012) (e.g., maximum gripper opening), mark
locations (Shen and Gans 2018) (e.g., a red X for a failure
location), and communicate misperceptions (Han and Yanco
2023) (e.g., hallucinated objects).

Robotic systems can experience multiple types of failures,
either from the robot software and hardware, or from sur-
rounding environments. Honig et al. (2022) discussed a tax-
onomy of human-robot failures in domestic robots that are
most frequently seen by customers. Carlson, Murphy, and
Nelson (2004) classified in-depth physical failures in the end
effector of the robot. Thus, along with the Out Of Reach fail-
ure from (Han, Phillips, and Yanco 2021), we studied three
other types of failures that are common in a pick-and-place
task, namely environment failure (e.g., Out Of Reach, Ob-
ject Size), control failure (e.g., Grasp Failure), and sensor
failure (e.g., Perception Failure).
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Human Perceptions Towards Robots

Trust in robots and autonomy has been extensively studied
to promote effective human-robot interaction. Anjomshoae
et al. (2019) claimed that trust (along with transparency)
is the most prominent drive in explanations, and that trust
can increase the users’ confidence in the systems by under-
standing how the systems work. When robots explain their
actions, humans can correct their mental models and cali-
brate their level of trust in the systems (De Graaf and Malle
2017). Moreover, Yang et al. (2017) indicated that trust can
be measured through a series of interactions with automa-
tion systems. Tolmeijer et al. (2020) suggested that offering
explanations can help mitigate failure and repair trust.

Humans usually take fellow humans’ competence for
granted during interaction, whether such interaction is ver-
bal or non-verbal (Tuncer et al. 2023). For humans and
robots to collaborate, humans need to learn the competence
of robots through prolonged interaction. Scheunemann, Cui-
jpers, and Salge (2020) found that humans prefer to phys-
ically interact with robots that are perceived as warm and
competent. Choi, Mattila, and Bolton (2021) measured com-
petence in robots based on capability, intelligence, and skill-
fulness, but did not find significant difference in perceived
competence in the case of robots explaining their failures.
They also claimed that providing an explanation can in-
crease the perceived warmth from humanoid robots, but not
for non-humanoids. In our experiment, we explored the ef-
fect of a non-humanoid robot’s movements as explanations
in robot failures.

Method

Inspired by the prior work of Han, Phillips, and Yanco
(2021), we designed an in-person, within-subjects experi-
ment to collect more reliable responses on human perception
of robot failure and explanation.

Robot Description

While prior work (Han, Phillips, and Yanco 2021) used a
Baxter robot (Fitzgerald 2013), our study used a Fetch robot
(Wise et al. 2016), which is a mobile manipulator with a
7-DOF arm and a head with built-in cameras. Fetch’s arm
has the maximum reach of 940.5 mm, which is enough for
the pick-and-place task. Furthermore, the smaller frame of a
Fetch robot compared to a Baxter robot makes it less impos-
ing. While Fetch has a movable head with “eyes” (cameras),
it has no explicit face, which imposes a hardware limitation
for eye gaze and facial expressions. Robot Operating System
(ROS) was used to control the robot.

Experiment Setup

The arrangement of the table for the pick-and-place task
is shown in Figure 1. There were seven blocks of differ-
ent sizes, shapes, and colors scattered on the table and the
robot’s task was to pick up the blocks and place them into the
tray. Among those blocks, some were designed to be picked
up by the robot gripper, while others were there as decoys.
For the Head & Projection explanation condition, a ceiling-
mounted external projector was used to project images onto



the table. Participants were only informed about the exis-
tence of the projection module, without knowing what the
projections looked like.

Perception

Grasp

Figure 1: Locations of the successful blocks (blue) and the
four failures (labeled). The arm position and projected white
area with red arc were used for Head & Projection during a
Reach failure.

Failure and Explanation

Prior work by Han, Phillips, and Yanco (2021) emphasized
the need for robots to explain their reaching failures using
two main modalities, namely Head (Look or Shake) and
Arm (Point). Building upon that, our work also used Fetch’s
head and arm for explanation. Furthermore, inspired by Han
and Yanco (2023), we incorporated Projection and Speech
as two new components in the explanations, and added three
new failure types: Size, Grasp, and Perception.

Explanation Conditions

Head: We removed the head shakes from Han, Phillips,
and Yanco (2021). Instead, the robot only pointed its head at
the location of the block.

Head & Arm: The robot pointed its head at the loca-
tion of the block and moved its arm to form a gesture. In
the case of a Reach failure, we mimicked the movements of
the Baxter robot in Han, Phillips, and Yanco (2021) towards
the block. In other failures, the robot attempted to grasp the
block an additional time.

Head & Projection: The robot pointed its head at the lo-
cation of the block and projected an image onto the table
that contained a visual explanation for the robot’s failure.
The Reach failure displayed a red arc denoting the maxi-
mum reach of the robot arm (e.g., Figure 1). The Size failure
displayed two red lines across the block showing the max-
imum gripper opening. The Grasp failure displayed a large
red X on top of the block. The Perception failure displayed
a red square where the block was hallucinated.

Head & Speech: The robot pointed its head at the lo-
cation of the block and uttered a statement explaining its
failure using a speaker. For the Reach failure, the statement
was, “My arm cannot reach the block, so I will not be able to
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pick the block.” For the Size failure, the statement was ,“The
block is too large, so I will not be able to pick the block.”
For the Grasp failure, the statement was, “I was unable to
grasp the block, so I will not be able to pick the block.” For
the Perception failure, the statement was, “My camera is not
working, so I will not be able to pick the block.”

Failure Types

Reach: The block was too far away from the robot arm to
reach, even when the arm was fully extended. This was the
same failure described in Han, Phillips, and Yanco (2021).

Size: The width of the block was larger than the maximum
gripper opening, so it could not pick up the block.

Grasp: The block was within the reach of the robot arm
and was of suitable size for the gripper to grasp. However,
the robot miscalculated the inverse kinematics of the arm,
leading to an unstable grip. That resulted in the block slip-
ping off the gripper after the gripper closed.

Perception: The block could not be found in the region
where the head was pointing, but the robot still hallucinated
a block in that area. Thus, the robot arm tried to grasp the
hallucinated block, but no block was picked up.

Measures

We prepared a post-trial survey based on questions used in
Han, Phillips, and Yanco (2021) to measure participants’
perceptions of robot failure and explanation, as shown in
Table 1. With the aim of replicating the results from their
work and extending our work with new explanation compo-
nents (Projection and Speech), we merged questions from
the prior study with new questions to measure the unexpect-
edness of the robot’s behavior (Unexpectedness), the differ-
ence between the ways humans and robots explain them-
selves (Human-Robot Difference), the level of explanation
detail (Level of Detail), and the how concise the explanation
should be (Conciseness). To keep the survey questions in-
ternally consistent with each other, we asked questions that
were very similar or contradictory to each other and primar-
ily used the 7-point Likert-type item (Schrum et al. 2020).
Each Likert-type item is coded as -3 (Strongly Disagree), -2
(Disagree), -1 (Moderately Disagree), O (Neutral), 1 (Mod-
erately Agree), 2 (Agree), and 3 (Strongly Agree).

In addition to the questions in Table 1, we designed a post-
study questionnaire (Table 2) to gather information about the
participants’ need for explanation when the robot explained
its failures. In the line of questioning, we investigated hu-
man preference for how and when the robot should explain
its behavior and whether robots need to provide explana-
tions in failure situations. We also wanted to explore partic-
ipants’ assessments of the robot’s movements and impres-
sions of interacting with the robot. Questions were Likert-
type items except for questions 10, 11, and 12, which were
multiple-choice questions with specific options. The choices
for Question 10 are “Yes” and “No”. The choices for Ques-
tion 11 are “It should look at me”, “It should raise its
volume”, and “Other (Please elaborate)”’. The choices of
Question 12 are “At the end”, “Whenever something unex-
pected happens”, “Before something unexpected happens”,
and “Other (Please elaborate)”.



Unexpectedness (Cronbach’s o = 0.80)

1. I found the robot’s behavior confusing.*

2. The robot’s behavior matched what

I expected. (Reversed)*

3. The robot’s behavior surprised me.*

4. The robot’s movements were natural. (Reversed)

5. The robot’s movements were predictable. (Reversed)
Human-Robot Difference

6. If a person did what the robot did, they should both
explain the same behavior in the same way.”

Level of Detail

7. The robot should give a very detailed explanation.*
Conciseness

8. The robot should concisely explain its behavior.*

Table 1: Post-Trial Questions. * indicates questions adapted
from Han, Phillips, and Yanco (2021).

Need for Explanation

9. I wanted the robot to explain its behavior.*

10. Do you think it is important for the robot to get your
attention before starting to explain its behavior?*

11. How should the robot get your attention before
starting to explain its behavior?*

12. When would be the best time for the robot to explain
its behavior?*

13. A robot signaling failure through its movements is
important.

14. T want robots to announce failure out loud.

15. I prefer non-verbal actions from robots when

they fail.

Table 2: Post-Study Questionnaire. * items were adapted
from Han, Phillips, and Yanco (2021).

User Study Design

We ran each participant across four modes of explanations.
To address practice and ordering effects, the types of fail-
ures and modes of explanations were each ordered using a
four-way Latin Square (Grant 1948). This yielded 16 unique
combinations of failure types and explanation conditions
and counterbalanced both factors. Due to having four types
of failures and four modes of explanations, our data includes
6 iterations over the 4-way pattern, totaling 24 participants.

Participants

In keeping with best practices, we sought gender balance.
The 24 participants included 12 women and 12 men. Partic-
ipants were of varying age range from 19 to 82 years, with
the mean age of 34.5. Participants’ experience with robots
ranged from no exposure to years of experience (building
robots at school, having robot vacuums, etc.). Participants
were recruited through an online platform for human behav-
ioral studies, flyers, and word of mouth.

Study Procedure
The participants were first introduced to the study by a
researcher and then asked to sign a consent form, which
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contained a brief of the study procedure and purpose, risks
engaging in the study, and compensation for the study. Be-
fore the experiment began, participants provided their demo-
graphic details and information about their experience with
robots. All responses were recorded using the Qualtrics web-
site on a computer at the study location.

Each participant was given four trials to experience four
combinations of robot failures and explanations. Each trial
had four consecutive parts: Success, Failure, Explanation,
and Survey. During the pick-and-place task, participants
stood in front of the robot on the other side of the table.

Success: The trial started with the robot in its initial state:
its arm was tucked into its torso and its head was held
straight. The robot then began scanning the table to search
for blocks to pick up. Upon finding two good candidates that
were close to the robot (two small blue blocks on the table
as seen in Figure 1), the robot successfully picked up these
two blocks and placed them into the tray. These two manip-
ulations were designed to be successful, indicating that the
robot was doing its job properly and mitigating bias. Then,
the robot moved on to the Failure part of the trial.

Failure: The robot began the Failure part of the trial by
looking at one of the blocks or areas on the table (pertaining
to one of the types of failures) farther from the robot. After
choosing its target, the robot attempted to grasp it by ap-
proaching the block area and closing its gripper once. When
the gripper was not able to grasp the block, the Failure phase
finished and the robot continued to the Explanation phase.

Explanation: Upon realizing that it could not pick up
something, the robot executed one of the explanation con-
ditions. The robot provided an explanation in situ when the
failure happened. Then, the robot returned to its initial state.

Survey: Next, participants were asked to respond to our
post-trial survey on Qualtrics about their observations in the
trial. After their responses were recorded, the Survey phase
of the trial concluded, marking the end of one trial. Partici-
pants returned to the table for the next trial.

After their four trials, participants were asked to respond
to a post-study questionnaire about their need for explana-
tion from robots. The study took 45 minutes, and they re-
ceived $10 compensation for their time. This research was
approved by our university’s Institutional Review Board.

Results

We analyzed Unexpectedness, Human-Robot Difference,
Level of Detail, and Conciseness using two-way ANOVAs.
For Need for Explanation, we summarized our findings.

Unexpectedness

The Unexpectedness item measured the level of unpre-
dictability of the robot’s behavior. The item had questions
about whether the robot’s behavior was confusing, surpris-
ing, natural, and predictable to participants during the trials.

We performed a two-way ANOVA to examine the effects
of failure types and explanation conditions on the level of
unexpectedness, with the distribution shown in Figure 2.
From the analysis, we found a statistically significant main
effect for failure types (F'(3,80) = 4.51,p < 0.01). Post
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Figure 2: Unexpectedness scores for four types of failures
(left) and modes of explanations (right). The white and black
diamonds indicate mean scores and outliers, respectively. *
represents p — value < 0.05.

hoc pairwise comparisons using Tukey’s HSD revealed that
there were significant pairwise differences across the failure
types. The Perception failure was found to have a signifi-
cantly higher mean score (e.g., more unexpected) than that
of the Reach failure (meandiff = 0.95,p — adjusted =
0.028) and Size failure (meandif f = 1.04, p— adjusted =
0.013). According to participants, Perception failure was
significantly more unexpected than Reach and Size failures.
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Figure 3: The distribution of Unexpectedness scores of four
explanation conditions in each type of failure. The white and
black diamonds indicate mean scores and outliers, respec-
tively. Boxes in blue, orange, green, and red represent Head,
Head & Arm, Head & Projection, and Head & Speech con-
ditions, respectively. * represents p — value < 0.05.

To investigate the unexpectedness of the explanation con-
ditions, we performed four additional one-way ANOVAs for
the Unexpectedness measure. We plotted the Unexpected-
ness scores of four explanation conditions when paired with
each of the failures in Figure 3. We found a statistically sig-
nificant main effect of explanation conditions when paired
with Perception failure (F'(3,20) = 5.75,p < 0.01). Post
hoc pairwise comparisons using Tukey’s HSD revealed the
significant difference between Head & Speech and Head
(meandif f = 1.83,p — adjusted = 0.012) explanation
conditions and between Head & Speech and Head & Pro-
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Jection explanation conditions (meandiff = 1.67,p —
adjusted = 0.024) when paired with Perception failure .

Human-Robot Difference

The Human-Robot Difference item asks whether robots and
humans should explain their failures in the same way.
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Figure 4: Human-Robot Difference scores in four types of
failures (left) and four modes of explanations (right). The
white diamonds indicate mean scores. *** represents p —
value < 0.001, and sx+x* represents p — value < 0.0001.

We performed a two-way ANOVA to examine the effects
of failure types and explanation conditions on the level of
human-likeness, with the distribution shown in Figure 4.
From the analysis, we found statistically significant main ef-
fects for failure types (F(3,80) = 2.82,p = 0.044) and
explanation conditions (F'(3,80) 10.34,p < 0.0001).
However, we did not find a statistically significant interac-
tion between the two (F'(9,80) = 0.85,p = 0.57). Post
hoc pairwise comparisons using Tukey’s HSD revealed that
there were no significant pairwise differences across the
failure types. However, across the conditions, the Head &
Speech explanation condition was found to have a signifi-
cantly higher mean score than that of the Head condition
(meandiff = 2.46,p < 0.0001), the Head & Arm con-
dition (meandiff = 2.04,p < 0.001), and the Head &
Projection condition (meandif f = 2.25,p < 0.001). Ac-
cording to the results, participants found the robot explain-
ing failures with speech to be more human-like than other
nonverbal cues.

We performed four additional ANOVA tests for the
Human-Robot Difference measure. We plotted the Human-
Robot Difference scores of all four conditions when paired
with each of the failure types, as shown in Figure 5. We
found a statistically significant main effect for explanation
conditions when paired with Reach failure (F'(3,20) =
4.76,p = 0.012), and with Perception failure (F'(3,20) =
3.67,p 0.03). Post hoc pairwise comparisons using
Tukey’s HSD revealed a significant difference between
Head & Speech and Head & Projection (meandiff =
3.5,p — adjusted < 0.01) explanation conditions when
paired with Reach failure. Moreover, we also found a signif-
icant difference between Head & Speech and Head & Arm
explanation conditions (meandi f f = 3.33, p—adjusted =
0.022) when paired with Perception failure.
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Figure 5: The distribution of Human-Robot Difference
scores of four explanation conditions in each type of fail-
ure. The white and black diamonds indicate mean scores and
outliers, respectively. Boxes in blue, orange, green, and red
represent Head, Head & Arm, Head & Projection, and Head
& Speech conditions, respectively. * represents p — value <
0.05, and #x* represents p — value < 0.01.

Level of Detail and Conciseness

The Level of Detail and Conciseness items measured the de-
gree of completeness (Q7) and the degree of brevity (Q8)
of the robot’s explanations. We found no significant main
effects or interactions for failure types or explanation condi-
tions in both Level of Detail and Conciseness. Participants
agreed the explanations from the robot should be detailed,
with the mean scores of Q7 being between 0 (Neutral) and 1
(Moderately Agree), but the robot should concisely explain
its behaviors under all circumstances, with the mean scores
of Q8 being between 1 (Moderately Agree) and 2 (Agree).

Post-study Questions: Need for Explanation

Participants preferred the robot to get their attention before
starting to explain its behaviors, with 79% of them agreeing
(Q10). To get the participants’ attention, 33% of participants
preferred the robot to look at them, 75% of participants pre-
ferred the robot to raise its volume or play some sounds to
alert the participants, and others preferred the robot to per-
form an actions like waving its arm (Q11). 79% of partici-
pants preferred the robot to explain its behavior whenever
something unexpected happens, 17% of participants pre-
ferred the robot to explain its behavior at the end, and the
rest preferred the timing to be before something unexpected
happens (Q12). We also found that participants strongly pre-
ferred the robot to explain its behavior (Q9), with a mean
score above 2 (Agree). Participants acknowledged the value
of signaling failure through gestures (Q13), but preferred
verbal announcements of failure from the robot (Q14), with
the mean scores being between 1 (Moderately Agree) and 2
(Agree). Finally, participants did not prefer non-verbal ex-
planations from the robot (Q15), with a mean score being
between -1 (Moderately Disagree) and 0 (Neutral).

Discussion

Research on the consistency of results between online
and in-person studies in human-robot interaction has been
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sparse. The findings among study replications across dif-
ferent robot platforms have also been inconsistent (Ullman,
Aladia, and Malle 2021). Thus, we designed our in-person
experiment under the assumption that our results could be
different from those of the online experiment conducted by
Han, Phillips, and Yanco (2021). However, replicated con-
ditions had consistent findings between their online Baxter
study and our in-person Fetch study. Our results revealed
that there was minimal difference in effects on participants
of both Head and Head & Arm conditions, with both result-
ing in Neutral scores on the level of unexpectedness. In ad-
dition, participants also preferred the robot to get their atten-
tion before explaining its behavior, preferably with an in situ
explanation. Moreover, participants also acknowledged the
importance of robots signaling their failures. Therefore, our
study successfully reinforced findings from the prior study.

Along with our successful replication of prior work re-
sults, we found that the introduction of the Projection com-
ponent did not lead to additional benefits in participants’ per-
ceptions of the robot. This finding is related, but not iden-
tical, to Han and Yanco (2023), which claimed that stan-
dalone projection markers can worsen participants’ causal
inference, as only half of their participants correctly inferred
the missing information about the object picking task when
only projection marker was used. In contrast, projection was
comparable to the other non-verbal conditions.

Findings from Han, Phillips, and Yanco (2021) suggested
that speech is preferred to gesture for robot explanations,
which our findings partially confirmed (Q13-15). Moreover,
findings from our post-study questionnaire provided further
evidence that speech was a preferred component of explana-
tion, as most participants wanted the robot to announce its
failure out loud and raise its volume to alert them before giv-
ing explanations. Those findings agree with prior work sug-
gesting human preference for verbal over nonverbal commu-
nication. For example, Nikolaidis et al. (2018) reported that
short verbal commands were more effective than non-verbal
actions to promote human-robot trust in collaborative tasks.

Conclusion

We extended prior work on non-verbal motion cues for robot
explanation from an online study to an in-person study. Our
findings suggested that head motions and paired head and
arm motions produced comparable effects for failure expla-
nation from robots. Our results confirmed the prior find-
ings and demonstrated consistency between online and in-
person studies. We also gathered new data on two additional
methods of explanation, namely Projection and Speech, and
found that speech was the most preferred mode of failure ex-
planation in terms of human-likeness. However, Projection
as an explanation component performed similarly to the sta-
tus quo of head motions and paired head and arm motions.
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